Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.460
Filtrar
1.
Microb Cell Fact ; 23(1): 113, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622698

RESUMEN

BACKGROUND: Isatropolone A and C, produced by Streptomyces sp. CPCC 204095, belong to an unusual class of non-benzenoid aromatic compounds and contain a rare seven-membered ring structure. Isatropolone A exhibits potent activity against Leishmania donovani, comparable to the only oral drug miltefosine. However, its variably low productivity represents a limitation for this lead compound in the future development of new anti-leishmaniasis drugs to meet unmet clinical needs. RESULTS: Here we first elucidated the regulatory cascade of biosynthesis of isatropolones, which consists of two SARP family regulators, IsaF and IsaJ. Through a series of in vivo and in vitro experiments, IsaF was identified as a pathway-specific activator that orchestrates the transcription of the gene cluster essential for isatropolone biosynthesis. Interestingly, IsaJ was found to only upregulate the expression of the cytochrome P450 monooxygenase IsaS, which is crucial for the yield and proportion of isatropolone A and C. Through targeted gene deletions of isaJ or isaS, we effectively impeded the conversion of isatropolone A to C. Concurrently, the facilitation of isaF overexpression governed by selected promoters, prompted the comprehensive activation of the production of isatropolone A. Furthermore, meticulous optimization of the fermentation parameters was conducted. These strategies culminated in the attainment of an unprecedented maximum yield-980.8 mg/L of isatropolone A-achieved in small-scale solid-state fermentation utilizing the genetically modified strains, thereby establishing the highest reported titer to date. CONCLUSION: In Streptomyces sp. CPCC 204095, the production of isatropolone A and C is modulated by the SARP regulators IsaF and IsaJ. IsaF serves as a master pathway-specific regulator for the production of isatropolones. IsaJ, on the other hand, only dictates the transcription of IsaS, the enzyme responsible for the conversion of isatropolone A and C. By engineering the expression of these pivotal genes, we have devised a strategy for genetic modification aimed at the selective and high-yield biosynthesis of isatropolone A. This study not only unveils the unique regulatory mechanisms governing isatropolone biosynthesis for the first time, but also establishes an essential engineering framework for the targeted high-level production of isatropolone A.


Asunto(s)
Streptomyces , Streptomyces/metabolismo , Vías Biosintéticas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regiones Promotoras Genéticas , Familia de Multigenes
2.
J Nat Prod ; 87(4): 1036-1043, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38600636

RESUMEN

Triterpenoids are a type of specialized metabolites that exhibit a wide range of biological activities. However, the availability of some minor triterpenoids in nature is limited, which has hindered our understanding of their pharmacological potential. To overcome this limitation, heterologous biosynthesis of triterpenoids in yeast has emerged as a promising and time-efficient production platform for obtaining these minor compounds. In this study, we analyzed the transcriptomic data of Enkianthus chinensis to identify one oxidosqualene cyclase (EcOSC) gene and four CYP716s. Through heterologous expression of these genes in yeast, nine natural pentacyclic triterpenoids, including three skeleton products (1-3) produced by one multifunctional OSC and six minor oxidation products (4-9) catalyzed by CYP716s, were obtained. Of note, we discovered that CYP716E60 could oxidize ursane-type and oleanane-type triterpenoids to produce 6ß-OH derivatives, marking the first confirmed C-6ß hydroxylation in an ursuane-type triterpenoid. Compound 9 showed moderate inhibitory activity against NO production and dose-dependently reduced IL-1ß and IL-6 production at the transcriptional and protein levels. Compounds 1, 2, 8, and 9 exhibited moderate hepatoprotective activity with the survival rates of HepG2 cells from 61% to 68% at 10 µM.


Asunto(s)
Antiinflamatorios , Sistema Enzimático del Citocromo P-450 , Transferasas Intramoleculares , Triterpenos , Triterpenos/farmacología , Triterpenos/química , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/química , Estructura Molecular , Saccharomyces cerevisiae , Hidroxilación , Células Hep G2 , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química
3.
Clin Transl Sci ; 17(4): e13782, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38629502

RESUMEN

In this brief report, we provide an analysis of the influence of a novel CYP2C haplotype (CYP2C:TG) on proton pump inhibitor (PPI) pharmacokinetics (PK) in children. The CYP2C:TG haplotype has been proposed to be associated with increased CYP2C19 activity. We sought to determine if this CYP2C:TG haplotype resulted in similar alterations in metabolism for proton pump inhibitors, which are primarily metabolized by CYP2C19. In a cohort of 41 children aged 6-21 participating in a PPI pharmacokinetic study, effects of the CYP2C:TG allele were assessed by fitting two linear regression models for each of the six PK outcomes assessed, the second of which accounted for the presence of the CYP2C:TG allele. The difference in R2 values between the two models was computed to quantify the variability in the outcome that could be accounted for by the CYP2C:TG allele after adjustment for the CYP2C19 genotype. We found the CYP2C:TG haplotype to have no measurable additive impact on CYP2C19-mediated metabolism of PPIs in vivo in older children and adolescents. The findings of this study do not support the clinical utility of routine testing for the CYP2C:TG haplotype to guide PPI dose adjustments in children.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Sistema Enzimático del Citocromo P-450 , Inhibidores de la Bomba de Protones , Niño , Humanos , Adolescente , Inhibidores de la Bomba de Protones/farmacocinética , Haplotipos , Hidrocarburo de Aril Hidroxilasas/genética , Citocromo P-450 CYP2C19/genética , Genotipo
4.
Plant Cell Rep ; 43(5): 122, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642121

RESUMEN

KEY MESSAGE: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.


Asunto(s)
Lagerstroemia , Transcriptoma , Triterpenos , Transcriptoma/genética , Lagerstroemia/genética , Lagerstroemia/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica
5.
Biopharm Drug Dispos ; 45(2): 107-114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573807

RESUMEN

VX-548 is a sodium channel blocker, which acts as an analgesic. This study aims to investigate the gender differences in the pharmacokinetics and metabolism of VX-548 in rats. After intravenous administration, the area under the curve (AUC0-t) of VX-548 was much higher in female rats (1505.8 ± 47.3 ng·h/mL) than in male rats (253.8 ± 6.3 ng·h/mL), and the clearance in female rats (12.5 ± 0.8 mL/min/kg) was much lower than in male rats (65.1 ± 1.7 mL/min/kg). After oral administration, the AUC0-t in female rats was about 50-fold higher than that in male rats. The oral bioavailability in male rats was 11% while it was 96% in female rats. An in vitro metabolism study revealed that the metabolism of VX-548 in female rat liver microsomes was much slower than in male rats. Further metabolite identification suggested that the significant gender difference in pharmacokinetics was attributed to demethylation. The female rat liver microsomes showed a limited ability to convert VX-548 into desmethyl VX-548. Phenotyping experiments indicated that the formation of desmethyl VX-548 was mainly catalyzed by CYP3A2 and CYP2C11 using rat recombinant CYPs. Overall, we revealed that the pharmacokinetics and metabolism of VX-548 in male and female rats showed significant gender differences.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Compuestos Organotiofosforados , Ratas , Masculino , Femenino , Animales , Factores Sexuales , Sistema Enzimático del Citocromo P-450/metabolismo , Disponibilidad Biológica , Microsomas Hepáticos/metabolismo , Administración Oral
6.
Mol Biol Rep ; 51(1): 526, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632160

RESUMEN

BACKGROUND: Vitamin D deficiency is prevalent among the Indonesian population, particularly in individuals diagnosed with leukemia-lymphoma. The regulation of vitamin D metabolism is influenced by the expression of several enzymes, such as CYP2R1, CYP24A1, and the vitamin D receptor (VDR). This study aimed to scrutinize the gene expression profiles in both mRNA and protein levels of VDR, CYP2R1, and CYP24A1 in leukemia and lymphoma patients. METHOD: The research was a cross-sectional study conducted at Cipto Mangunkusumo Hospital (RSCM) in Jakarta, Indonesia. The study included a total of 45 patients aged over 18 years old who have received a diagnosis of lymphoma or leukemia. Vitamin D status was measured by examining serum 25 (OH) D levels. The analysis of VDR, CYP2R1, and CYP24A1 mRNA expression utilized the qRT-PCR method, while protein levels were measured through the ELISA method. CONCLUSION: The study revealed a noteworthy difference in VDR protein levels between men and women. The highest mean CYP24A1 protein levels were observed in the age group > 60 years. This study found a significant, moderately positive correlation between VDR protein levels and CYP24A1 protein levels in the male and vitamin D sufficiency groups. In addition, a significant positive correlation was found between VDR mRNA levels and CYP2R1 mRNA levels, VDR mRNA levels and CYP2R1 mRNA levels, and CYP2R1 mRNA levels and CYP24A1 mRNA levels. However, the expression of these genes does not correlate with the protein levels of its mRNA translation products in blood circulation.


Asunto(s)
Leucemia , Linfoma , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Receptores de Calcitriol/genética , Vitamina D3 24-Hidroxilasa/genética , Estudios Transversales , Vitamina D , Sistema Enzimático del Citocromo P-450/genética , Perfilación de la Expresión Génica , ARN Mensajero/metabolismo , Familia 2 del Citocromo P450/genética , Colestanotriol 26-Monooxigenasa/genética
7.
J Agric Food Chem ; 72(15): 8444-8459, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574108

RESUMEN

Cytochrome P450 sterol 14α-demethylase (CYP51) is a key enzyme involved in the sterol biosynthesis pathway and serves as a target for sterol demethylation inhibitors (DMIs). In this study, the 3D structures of three CPY51 paralogues from Calonectria ilicicola (C. ilicicola) were first modeled by AlphaFold2, and molecular docking results showed that CiCYP51A, CiCYP51B, or CiCYP51C proteins individually possessed two active pockets that interacted with DMIs. Our results showed that the three paralogues play important roles in development, pathogenicity, and sensitivity to DMI fungicides. Specifically, CiCYP51A primarily contributed to cell wall integrity maintenance and tolerance to abiotic stresses, and CiCYP51B was implicated in sexual reproduction and virulence, while CiCYP51C exerted negative regulatory effects on sterol 14α-demethylase activity within the ergosterol biosynthetic pathway, revealing its genus-specific function in C. ilicicola. These findings provide valuable insights into developing rational strategies for controlling soybean red crown rot caused by C. ilicicola.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hypocreales , Lanosterol , Lanosterol/metabolismo , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450/metabolismo , Esteroles , Esterol 14-Desmetilasa/química
8.
Oncol Res ; 32(4): 785-797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560574

RESUMEN

Cytochromes P450 (CYPs) play a prominent role in catalyzing phase I xenobiotic biotransformation and account for about 75% of the total metabolism of commercially available drugs, including chemotherapeutics. The gene expression and enzyme activity of CYPs are variable between individuals, which subsequently leads to different patterns of susceptibility to carcinogenesis by genotoxic xenobiotics, as well as differences in the efficacy and toxicity of clinically used drugs. This research aimed to examine the presence of the CYP2B6*9 polymorphism and its possible association with the incidence of B-CLL in Egyptian patients, as well as the clinical outcome after receiving cyclophosphamide chemotherapy. DNA was isolated from whole blood samples of 100 de novo B-CLL cases and also from 100 sex- and age-matched healthy individuals. The presence of the CYP2B6*9 (G516T) polymorphism was examined by PCR-based allele specific amplification (ASA). Patients were further indicated for receiving chemotherapy, and then they were followed up. The CYP2B6*9 variant indicated a statistically significant higher risk of B-CLL under different genetic models, comprising allelic (T-allele vs. G-allele, OR = 4.8, p < 0.001) and dominant (GT + TT vs. GG, OR = 5.4, p < 0.001) models. Following cyclophosphamide chemotherapy, we found that the patients with variant genotypes (GT + TT) were less likely to achieve remission compared to those with the wild-type genotype (GG), with a response percentage of (37.5% vs. 83%, respectively). In conclusion, our findings showed that the CYP2B6*9 (G516T) polymorphism is associated with B-CLL susceptibility among Egyptian patients. This variant greatly affected the clinical outcome and can serve as a good therapeutic marker in predicting response to cyclophosphamide treatment.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Citocromo P-450 CYP2B6/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/epidemiología , Leucemia Linfocítica Crónica de Células B/genética , Incidencia , Egipto/epidemiología , Sistema Enzimático del Citocromo P-450/genética , Genotipo , Ciclofosfamida/efectos adversos
9.
Sci Rep ; 14(1): 7922, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575662

RESUMEN

Breast cancer (BC) is the most prevalent malignancy in women globally. At time of diagnosis, premenopausal BC is considered more aggressive and harder to treat than postmenopausal cases. Cytochrome P450 (CYP) enzymes are responsible for phase I of estrogen metabolism and thus, they are prominently involved in the pathogenesis of BC. Moreover, CYP subfamily 2C and 3A play a pivotal role in the metabolism of taxane anticancer agents. To understand genetic risk factors that may have a role in pre-menopausal BC we studied the genotypic variants of CYP2C8, rs11572080 and CYP3A4, rs2740574 in female BC patients on taxane-based therapy and their association with menopausal status. Our study comprised 105 female patients with histologically proven BC on paclitaxel-therapy. They were stratified into pre-menopausal (n = 52, 49.5%) and post-menopausal (n = 53, 50.5%) groups. Genotyping was done using TaqMan assays and employed on Quantstudio 12 K flex real-time platform. Significant increased frequencies of rs11572080 heterozygous CT genotype and variant T allele were established in pre-menopausal group compared to post-menopausal group (p = 0.023, 0.01, respectively). Moreover, logistic regression analysis revealed a significant association between rs11572080 CT genotype and premenopausal BC. However, regarding rs2740574, no significant differences in genotypes and allele frequencies between both groups were detected. We reported a significant association between CYP2C8 genotypic variants and premenopausal BC risk in Egyptian females. Further studies on larger sample sizes are still needed to evaluate its importance in early prediction of BC in young women and its effect on treatment outcome.


Asunto(s)
Neoplasias de la Mama , Paclitaxel , Humanos , Femenino , Paclitaxel/efectos adversos , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP3A/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Genotipo , Sistema Enzimático del Citocromo P-450/genética
10.
Methods Enzymol ; 696: 251-285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658083

RESUMEN

Some species of the genus Cunninghamella (C. elegans, C. echinulata and C. blaskesleeana) produce the same phase I and phase II metabolites when incubated with xenobiotics as mammals, and thus are considered microbial models of mammalian metabolism. This had made these fungi attractive for metabolism studies with drugs, pesticides and environmental pollutants. As a substantial proportion of pharmaceuticals and agrochemicals are fluorinated, their biotransformation has been studied in Cunninghamella fungi and C. elegans in particular. This article details the methods employed for cultivating the fungi in planktonic and biofilm cultures, and extraction and analysis of fluorinated metabolites. Furthermore, protocols for the heterologous expression of Cunninghamella cytochromes P450 (CYPs), which are the enzymes associated with phase I metabolism, are described.


Asunto(s)
Biotransformación , Cunninghamella , Sistema Enzimático del Citocromo P-450 , Xenobióticos , Cunninghamella/metabolismo , Xenobióticos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Halogenación , Biopelículas , Preparaciones Farmacéuticas/metabolismo , Animales
12.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628055

RESUMEN

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Asunto(s)
Escarabajos , Proteínas de Insectos , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Escarabajos/genética , Larva/genética , Larva/metabolismo , Insectos/metabolismo , Metamorfosis Biológica , Ecdisterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Interferencia de ARN , Pupa/genética , Pupa/metabolismo
13.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612422

RESUMEN

As compounds of natural origin enter human body, it is necessary to investigate their possible interactions with the metabolism of drugs and xenobiotics in general, namely with the cytochrome P450 (CYP) system. Phytic acid (myo-inositol hexaphosphoric acid, IP6) is mainly present in plants but is also an endogenous compound present in mammalian cells and tissues. It has been shown to exhibit protective effect in many pathological conditions. For this paper, its interaction with CYPs was studied using human liver microsomes, primary human hepatocytes, the HepG2 cell line, and molecular docking. Docking experiments and absorption spectra demonstrated the weak ability of IP6 to interact in the heme active site of CYP1A. Molecular docking suggested that IP6 preferentially binds to the protein surface, whereas binding to the active site of CYP1A2 was found to be less probable. Subsequently, we investigated the ability of IP6 to modulate the metabolism of xenobiotics for both the mRNA expression and enzymatic activity of CYP1A enzymes. Our findings revealed that IP6 can slightly modulate the mRNA levels and enzyme activity of CYP1A. However, thanks to the relatively weak interactions of IP6 with CYPs, the chances of the mechanisms of clinically important drug-drug interactions involving IP6 are low.


Asunto(s)
Ácido Fítico , Xenobióticos , Humanos , Animales , Simulación del Acoplamiento Molecular , Sistema Enzimático del Citocromo P-450 , ARN Mensajero , Mamíferos
14.
J Med Chem ; 67(8): 6238-6252, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38598688

RESUMEN

Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 µg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.


Asunto(s)
Antifúngicos , Candida albicans , Cryptococcus neoformans , Pruebas de Sensibilidad Microbiana , Tetrazoles , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/uso terapéutico , Tetrazoles/farmacología , Tetrazoles/química , Tetrazoles/síntesis química , Tetrazoles/farmacocinética , Tetrazoles/uso terapéutico , Animales , Humanos , Candida albicans/efectos de los fármacos , Ratones , Cryptococcus neoformans/efectos de los fármacos , Relación Estructura-Actividad , Aspergillus fumigatus/efectos de los fármacos , Descubrimiento de Drogas , Farmacorresistencia Fúngica/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo
15.
J Chem Inf Model ; 64(8): 3149-3160, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587937

RESUMEN

Cytochrome P450 enzymes (CYPs) play a crucial role in Phase I drug metabolism in the human body, and CYP activity toward compounds can significantly affect druggability, making early prediction of CYP activity and substrate identification essential for therapeutic development. Here, we established a deep learning model for assessing potential CYP substrates, DeepP450, by fine-tuning protein and molecule pretrained models through feature integration with cross-attention and self-attention layers. This model exhibited high prediction accuracy (0.92) on the test set, with area under the receiver operating characteristic curve (AUROC) values ranging from 0.89 to 0.98 in substrate/nonsubstrate predictions across the nine major human CYPs, surpassing current benchmarks for CYP activity prediction. Notably, DeepP450 uses only one model to predict substrates/nonsubstrates for any of the nine CYPs and exhibits certain generalizability on novel compounds and different categories of human CYPs, which could greatly facilitate early stage drug design by avoiding CYP-reactive compounds.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Moleculares , Aprendizaje Profundo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato
16.
BMC Complement Med Ther ; 24(1): 152, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580936

RESUMEN

BACKGROUND: Metabolism is an important component of the kinetic characteristics of herbal constituents, and it often determines the internal dose and concentration of these effective constituents at the target site. The metabolic profile of plant extracts and pure compounds need to be determined for any possible herb-drug metabolic interactions that might occur. METHODS: Various concentrations of the essential oil of Lippia scaberrima, the ethanolic extract of Lippia scaberrima alone and their combinations with fermented and unfermented Aspalathus linearis extract were used to determine the inhibitory potential on placental, microsomal and recombinant human hepatic Cytochrome P450 enzymes. Furthermore, the study investigated the synthesis and characterization of gold nanoparticles from the ethanolic extract of Lippia scaberrima as a lead sample. Confirmation and characterization of the synthesized gold nanoparticles were conducted through various methods. Additionally, the cytotoxic properties of the ethanolic extract of Lippia scaberrima were compared with the gold nanoparticles synthesized from Lippia scaberrima using gum arabic as a capping agent. RESULTS: All the samples showed varying levels of CYP inhibition. The most potent inhibition took place for CYP2C19 and CYP1B1 with 50% inhibitory concentration (IC50) values of less than 0.05 µg/L for the essential oil tested and IC50-values between 0.05 µg/L-1 µg/L for all the other combinations and extracts tested, respectively. For both CYP1A2 and CYP2D6 the IC50-values for the essential oil, the extracts and combinations were found in the range of 1 - 10 µg/L. The majority of the IC50 values found were higher than 10 µg/L and, therefore, were found to have no inhibition against the CYP enzymes tested. CONCLUSION: Therefore, the essential oil of Lippia scaberrima, the ethanolic extract of Lippia scaberrima alone and their combinations with Aspalathus linearis do not possess any clinically significant CYP interaction potential and may be further investigated for their adjuvant potential for use in the tuberculosis treatment regimen. Furthermore, it was shown that the cytotoxic potential of the Lippia scaberrima gold nanoparticles was reduced by twofold when compared to the ethanolic extract of Lippia scaberrima.


Asunto(s)
Aspalathus , Lippia , Nanopartículas del Metal , Aceites Volátiles , Humanos , Femenino , Embarazo , Oro , Aspalathus/metabolismo , Lippia/metabolismo , Placenta , Sistema Enzimático del Citocromo P-450 , Extractos Vegetales/farmacología , Aceites Volátiles/farmacología
17.
Pestic Biochem Physiol ; 200: 105826, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582590

RESUMEN

Acetyl-CoA carboxylase (ACCase)-inhibiting herbicides are among the most commonly used herbicides to control grassy weeds, especially Leptochloa chinensis, in rice fields across China. Herein, we collected a suspected resistant (R) population of L. chinensis (HFLJ16) from Lujiang county in Anhui Province. Whole plant dose response tests showed that, compared with the susceptible (S) population, the R population showed high resistance to cyhalofop-butyl (22-fold) and displayed cross-resistance to metamifop (9.7-fold), fenoxaprop-P-ethyl (18.7-fold), quizalofop-P-ethyl (7.6-fold), clodinafop-propargyl (12-fold) and clethodim (8.4-fold). We detected an amino acid substitution (Cys-2088-Arg) in the ACCase of resistant L. chinensis. However, ACCase gene expression levels were not significantly different (P > 0.05) between R plants and S plants, without or with cyhalofop-butyl treatment. Furthermore, pretreatment with piperonyl butoxide (PBO, a cytochrome P450 monooxygenase (CYP450) inhibitor) or 4-chloro-7-nitrobenzoxadiazole (NBD-Cl, a glutathione-S-transferase (GST) inhibitor), inhibited the resistance of the R population to cyhalofop-butyl significantly (by approximately 60% and 26%, respectively). Liquid chromatography tandem mass spectrometry analysis showed that R plants metabolized cyhalofop-butyl and cyhalofop acid (its metabolite) significantly faster than S plants. Three CYP450 genes, one GST gene, and two ABC transporter genes were induced by cyhalofop-butyl and were overexpressed in the R population. Overall, GST-associated detoxification, CYP450 enhancement, and target-site gene mutation are responsible for the resistance of L. chinensis to cyhalofop-butyl.


Asunto(s)
4-Cloro-7-nitrobenzofurazano , Acetil-CoA Carboxilasa , Butanos , Herbicidas , Nitrilos , Oxazoles , Propionatos , Acetil-CoA Carboxilasa/metabolismo , Proteínas de Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Herbicidas/farmacología , Sistema Enzimático del Citocromo P-450/genética , Mutación , Resistencia a los Herbicidas/genética
18.
Int. microbiol ; 27(2): 449-457, Abr. 2024. tab, graf
Artículo en Inglés | IBECS | ID: ibc-232292

RESUMEN

Indole is a typical heterocyclic compound derived from tryptophan widespread in nature. Pseudomonas aeruginosa is one of the most common opportunistic pathogens everywhere in the world. Indole and P. aeruginosa will encounter inevitably; however, the indole transformation process by P. aeruginosa remains unclear. Herein, an indole-degrading strain of P. aeruginosa Jade-X was isolated from activated sludge. Strain Jade-X could degrade 1 mmol/L indole within 48 h with the inoculum size of 1% (v/v). It showed high efficiency in indole degradation under the conditions of 30–42 °C, pH 5.0–9.0, and NaCl concentration less than 2.5%. The complete genome of strain Jade-X was sequenced which was 6508614 bp in length with one chromosome. Bioinformatic analyses showed that strain Jade-X did not contain the indole oxygenase gene. Three cytochrome P450 genes were identified and up-regulated in the indole degradation process by RT-qPCR analysis, while cytochrome P450 inhibitors did not affect the indole degradation process. It suggested that indole oxidation was catalyzed by an unraveled enzyme. An ant gene cluster was identified, among which the anthranilate 1,2-dioxygenase and catechol 1,2-dioxygenase genes were upregulated. An indole-anthranilate-catechol pathway was proposed in indole degradation by strain P. aeruginosa Jade-X. This study enriched our understanding of the indole biodegradation process in P. aeruginosa.(AU)


Asunto(s)
Humanos , Biodegradación Ambiental , Genómica , Sistema Enzimático del Citocromo P-450 , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Indoles
19.
Biochemistry ; 63(8): 1026-1037, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564530

RESUMEN

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11ß-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11ß-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.


Asunto(s)
Aldosterona , Esteroide 11-beta-Hidroxilasa , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Corticosterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Catálisis , Cinética
20.
Biomed Khim ; 70(1): 33-40, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38450679

RESUMEN

Ruthenium nitrosyl complexes are actively investigated as antitumor agents. Evaluation of potential interactions between cytochromes P450 (CYPs) with new compounds is carried out regularly during early drug development. In this study we have investigated the cytotoxic and antiproliferative activities of ruthenium nitrosyl complexes with methyl/ethyl esters of nicotinic and isonicotinic acids and γ-picoline against 2D and 3D cultures of human hepatocellular carcinoma HepG2 and non-cancer human lung fibroblasts MRC-5, assessed their photoinduced activity at λrad = 445 nm, and also evaluated their modulating effect on CYP3A4, CYP2C9, and CYP2C19. The study of cytotoxic and antiproliferative activities against 2D and 3D cell models was performed using phenotypic-based high content screening (HCS). The expression of CYP3A4, CYP2C9, and CYP2C19 mRNAs and CYP3A4 protein was examined using target-based HCS. The results of CYP3A4 mRNA expression were confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The ruthenium nitrosyl complexes exhibited a dose-dependent cytotoxic effect against HepG2 and MRC-5 cells. The cytotoxic activity of complexes with ethyl isonicotinate (1) and nicotinate (3, 4) was significantly lower for MRC-5 than for HepG2, for a complex with methyl isonicotinate (2) it was higher for MRC-5 than for HepG2, for a complex with γ-picoline (5) it was comparable for both lines. The antiproliferative effect of complexes 2 and 5 was one order of magnitude higher for MRC-5; for complexes 1, 3, and 4 it was comparable for both lines. The cytotoxic activity of all compounds for 3D HepG2 was lower than for 2D HepG2, with the exception of 4. Photoactivation affected the activity of complex 1 only. Its cytotoxic activity decreased, while the antiproliferative activity increased. The ruthenium nitrosyl complexes 1-4 acted as inducers of CYP3A4 and CYP2C19, while the complex with γ-picoline (5) induced of CYP3A4. Among the studied ruthenium nitrosyl complexes, the most promising potential antitumor compound is the ruthenium compound with methyl nicotinate (4).


Asunto(s)
Antineoplásicos , Rutenio , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP2C19 , Rutenio/farmacología , Células Hep G2 , Citocromo P-450 CYP2C9 , Sistema Enzimático del Citocromo P-450 , Antineoplásicos/farmacología , Picolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...